Cauchy-Dirichlet problem for the nonlinear degenerate parabolic equations
نویسندگان
چکیده
منابع مشابه
The Cauchy-dirichlet Problem for a General Class of Parabolic Equations
We prove regularity results such as interior Lipschitz regularity and boundary continuity for the Cauchy-Dirichlet problem associated to a class of parabolic equations inspired by the evolutionary p-Laplacian, but extending it at a wide scale. We employ a regularization technique of viscosity-type that we find interesting in itself.
متن کاملModified Decomposition Method for Solving the Cauchy Problem for Nonlinear Parabolic-Hyperbolic Equations
In this paper Modified decomposition method is applied to the solvability of nonlinear parabolic-hyperbolic equations and illustrated with a few simple examples.
متن کاملThe Cauchy Problem for Semilinear Parabolic Equations in Besov Spaces
In this paper we first give a unified method by introducing the concept of admissible triplets to study local and global Cauchy problems for semi-linear parabolic equations with a general nonlinear term in different Sobolev spaces. In particular, we establish the local well-posedness and small global well-posedness of the Cauchy problem for semi-linear parabolic equations without the homogeneou...
متن کاملThe Dirichlet Problem for Degenerate Complex Monge-ampere Equations
The Dirichlet problem for a Monge-Ampère equation corresponding to a nonnegative, possible degenerate cohomology class on a Kähler manifold with boundary is studied. C1,α estimates away from a divisor are obtained, by combining techniques of Blocki, Tsuji, Yau, and pluripotential theory. In particular, C1,α geodesic rays in the space of Kähler potentials are constructed for each test configurat...
متن کاملStability of Entropy Solutions to the Cauchy Problem for a Class of Nonlinear Hyperbolic-Parabolic Equations
Consider the Cauchy problem for the nonlinear hyperbolic-parabolic equation: (*) ut + 1 2 a · ∇xu = ∆u+ for t > 0, where a is a constant vector and u+ = max{u, 0}. The equation is hyperbolic in the region [u < 0] and parabolic in the region [u > 0]. It is shown that entropy solutions to (*), that grow at most linearly as |x| → ∞, are stable in a weighted L(IR ) space, which implies that the sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2005
ISSN: 1085-3375,1687-0409
DOI: 10.1155/aaa.2005.607